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Abstract

Birth weight (BW) is an important predictor of newborn survival and health and has associations with many adult health
outcomes, including cardiometabolic disorders, autoimmune diseases and mental health. On average, twins have a lower
BW than singletons as a result of a different pattern of fetal growth and shorter gestational duration. Therefore,
investigations into the genetics of BW often exclude data from twins, leading to a reduction in sample size and remaining
ambiguities concerning the genetic contribution to BW in twins. In this study, we carried out a genome-wide association
meta-analysis of BW in 42 212 twin individuals and found a positive correlation of beta values (Pearson’s r = 0.66, 95%
confidence interval [CI]: 0.47–0.77) with 150 previously reported genome-wide significant variants for singleton BW.
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We identified strong positive genetic correlations between BW in twins and numerous anthropometric traits, most notably
with BW in singletons (genetic correlation [rg] = 0.92, 95% CI: 0.66–1.18). Genetic correlations of BW in twins with a series of
health-related traits closely resembled those previously observed for BW in singletons. Polygenic scores constructed from a
genome-wide association study on BW in the UK Biobank demonstrated strong predictive power in a target sample of Dutch
twins and singletons. Together, our results indicate that a similar genetic architecture underlies BW in twins and singletons
and that future genome-wide studies might benefit from including data from large twin registers.

Introduction
Birth weight (BW) is a powerful predictor of infant and new-
born survival, with lower weight infants being at higher risk
of mortality (1–3). BW is also associated with a wide array of
health-related variables in later life (4), with varying effect sizes,
including adult body mass index (BMI) (5,6), cardiovascular dis-
ease (7,8), type 2 diabetes (9), hypertension (10–12) and psycho-
logical distress (13). Our knowledge of the biological pathways
underlying BW is growing with the rapidly increasing number of
genetic variants identified in genome-wide association (GWA)
studies. Yet, these investigations mainly focus on BW in sin-
gletons and tend to exclude data from twins in the discov-
ery analysis. Therefore, knowledge about the genetic overlap
between BW in singletons and twins is limited and it is not
clear to what degree findings in singletons can be generalized
to twins and to what extent data from twins can contribute
to gene discovery for BW. This knowledge would be useful as
a considerable genetic overlap would indicate that data from
singletons and twins could be combined for attaining larger
sample sizes.

BW is a complex and multifactorial trait (14,15). Maternal
and fetal genomes conjointly determine fetal size, making esti-
mations of the heritability of BW challenging as offspring and
maternal genomes are not independent. In twins, BW is different
from BW in singleton births because of their lower gestational
age. The main factor explaining lower gestational age is uterine
overdistension (16). Still, twin and family studies suggest similar
heritability estimates for BW, ranging from 10 to 40% (17–20),
indicating a moderate contribution of genetic factors to BW vari-
ation. Of interest for our quest is a study from the Netherlands
in which heritability was estimated from data on parents and
their singleton offspring and from data on mono- and dizygotic
twins (19). The heritability estimates for BW and height were all
around 0.3 and highly comparable in both groups.

The number of genetic variants identified for BW is growing
based on findings from GWA studies (GWAS). In a 2010 study by
Freathy et al. (21), two variants, in ADCY5 and near CCNL1, were
found to influence variation in BW in singletons. The number of
associated variants increased to seven in 2013 with an expanded
meta-analysis study of over 69 000 European individuals (22).
In a multi-ancestry GWA meta-analysis (GWAMA) by Horikoshi
and colleagues (23), BW and genotype data were collected for
153 781 singletons. The result of this effort was the identification
of 59 independent signals, capturing approximately 15% of the
variance in BW. Beaumont and colleagues (24) also examined
the contribution of fetal versus maternal genetic effects and
identified ten maternal loci influencing offspring birthweight.
Additional GWA efforts have been undertaken to ascertain the
maternal and fetal genetic effects on BW and their relation
to cardiometabolic risk, in which 190 independent associations
were discovered (25). To date, only one GWA study has been
performed on BW in twins (4593 female twins from the UK),
which identified one variant on chromosome 9, close to the
NTRK2 gene (26).

The Developmental Origins of Health and Disease (DOHaD)
hypothesis is based on observations that adverse influences
early in development, particularly in the intrauterine envi-
ronment, result in permanent physiological and metabolomic
changes leading to increased risk of disease in adulthood
(27–29). One hypothesis, postulated by Barker in the 1990s,
proposed that intrauterine growth restriction, low BW and
premature birth have a causal relationship to hypertension,
coronary heart disease and non-insulin-dependent diabetes in
later life. Barker and colleagues traced infant mortality rates in
England during the early 1900s and found strong geographical
relations between infant death and high rates of mortality
resulting from coronary heart disease years later (27). They
postulated that the geographic associations of infant mortality
and adult death rates ‘reflects variations in nutrition in early life,
which are expressed pathologically on exposure to later dietary
influences’ (p.1081). At the time, the typical certified cause of
death in newborn babies was low BW. Thus, the hypothesis
was that low BW babies surviving infancy suffered from
fetal undernutrition, exhibiting non-communicable changes
in metabolism and physiology, in turn, increasing coronary
heart disease risk in adulthood (30). Low BW can serve as a
proxy for a suboptimal intrauterine environment and is not
only associated with cardiovascular disease (31), but also with
respiratory disease (32), various psychiatric disorders (33), as
well as mental health, cognitive and socioeconomic outcomes
(34).

In general, the DOHaD and the Barker hypotheses are
environmentally based. That is, the existence of an adverse
intrauterine environment leads to decreased BW and long-
term cardiometabolic sequalae in offspring. Alternatively, strong
genetic correlations between low singleton BW and indicators
of metabolic and cardiovascular health, as described in the
meta-analysis by Horikoshi and colleagues (23), correspond
more closely to the Fetal Insulin Hypothesis (35). In this
context, the correlations between BW and cardiometabolic
disorders are driven by the transmission of maternal genes
to the offspring. However, genetic correlations between BW
and the cardiometabolic traits could be driven through the
fetal and/or the maternal genome. The latter is broadly
consistent with the DOHaD/Barker hypothesis since the mater-
nal genome defines the intrauterine environment, whereas
the former more likely reflects the Fetal Insulin Hypothesis
(36). Recent studies have investigated these differences in
hopes of disentangling the relative contributions of fetal and
maternal effects on BW and later life cardiometabolic disease
(25,37).

On average, twins have lower BW than singletons since twin
pregnancy is characterized by a shorter gestational duration
(16) and because fetal growth slows down after approximately
32 weeks of gestation (38–41). Therefore, investigations into
the genetic architecture of BW and other birth-related charac-
teristics often exclude twins, even though this may lead to a
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Figure 1. Manhattan plot from the genome-wide association meta-analysis for BW. The association P-value (on -log10 scale) for each of up to 7 692 335 SNPs (y-axis) is

plotted against the genomic position according to NCBI Build 37 (x-axis). For plotting purposes, overlapping data points are not drawn for filtered SNPs with a P-value

≥ 1 × 10–5.

significant decrease in sample size. Concerning the DOHaD
hypothesis, there is no evidence that the relation between BW
and later-life disease differs between twins and singletons as
demonstrated for blood pressure or anti-hypertensive drug use
(42–44) and diabetes (45,46).

This study aimed to search for common genetic variants
underlying BW in twins by carrying out a meta-analysis of
genetic association studies in twins and compare the results to
those for BW in singletons. To this end, four approaches were
employed: 1) A meta-analysis of combined GWA results from five
European twin cohorts, UK Biobank, one Australian twin cohort
and one twin cohort from the Midwestern region of the United
States of America. 2) An assessment of the genetic correlations
between BW in twins and BW in singletons. 3) The evaluation
of the genetic correlations between BW in twins and a range
of traits and diseases in later life, including anthropometric
and neuropsychiatric characteristics. 4) An assessment of the
predictive performance of BW polygenic scores in twins and
singletons.

Results
Meta-analysis

We carried out a GWAMA for BW in 42 212 twins. The
meta-analysis QQ-plot, showing the expected distribution of
genome-wide P-values compared to the observed values across
SNPs, can be found in Supplementary Material, Figure S1. The
Manhattan plot for the meta-analysis is shown in Figure 1.
There were no genome-wide significant SNPs at the defined
minimum P-value for lead SNPs (P < 5 × 10−8); however, two
lead SNPs had an association signal of P < 5 × 10−7. These SNPs
were located on chromosome 1 (rs10800682, hg19 position
1:200198946, P = 2.92 × 10−7) and chromosome 3 (rs3845913, hg19
position 3:123100606, P = 2.93 × 10−7). rs10800682 is independent
(>12 Mb, EUR r2<0.05) of all genome-wide significant loci
found by Horikoshi and colleagues (23). rs3845913 is an
intronic variant of ADCY5 and is ∼31 kb downstream of
rs11719201 (EUR r2 0.154), one of 60 loci previously associated
with BW (23).

Figure 2. Scatter plot of the beta estimates from the overlapping SNPs between

the current study and those reported in Warrington et al. (25) for the GWAS on

own BW (P < 6.6 × 10−9). Of the significant SNPs, 150 overlapped with the current

study.

Replication of previous association results

Though no genome-wide significant SNPs were identified, we
evaluated the performance of SNPs in the current study with the
genome-wide significant SNPs signals (P < 6.6 × 10−9) recently
identified by Warrington et al. (25) in a GWAS of own BW. Of
the significant SNPs, 150 overlapped with the current study
after retention of markers present in greater than 70% of all
study participants. As shown in Figure 2, following alignment
of effect alleles, the beta estimates between overlapping mark-
ers are highly correlated (Pearson’s r = 0.66, 95% CI: 0.47–0.77).
Summary statistics of the 150 overlapping variants are presented
in Supplementary Material, Table S1. Overall, the positive linear
relationship indicates that the previously reported significant
variants behave similarly between singletons and twins.

Additionally, since gestational age was not available in
all cohorts, we assessed heterogeneity of the overlapping
SNPs mentioned above (i.e. 150) using METAL (implemented
as Cochran’s Q-test). No significant heterogeneity in allelic
effects was observed after Bonferroni correction (P > 0.00033).
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The smallest reported P-value of heterogeneity statistics in the
current study was 0.002, which is in line with the smallest
reported P-value of heterogeneity statistics for the genome-
wide significant variants reported in Warrington et al. of 0.004
(Supplementary Material, Table S1).

Genetic correlations

The results from the genetic correlation analyses of BW in twins
can be found in Figure 3 and Supplementary Material, Table S2.
In general, the strongest genetic correlations were with anthro-
pometric traits, specifically BW-related phenotypes. Previous
studies have investigated and attempted to partition mater-
nal and fetal genetic effects on BW, allowing comparisons to
individual and parental effects in this study.

The strongest genetic correlation was with ’child birth
weight’ (i.e. the individuals own genetic effect on their BW)
(genetic correlation [rg] = 0.98, 95% confidence interval [CI]: 0.62–
1.33) based on a discovery GWAS of 26 836 European individuals
(22). Similarly, robust positive correlations were found with other
phenotypes of the individuals own genetic effect on their BW,
including UK Biobank birth weight (data field 20 022) (rg = 0.95,
95% CI: 0.71–1.19), ’own birth weight’ (rg = 0.92, 95% CI: 0.66–1.18)
derived from an expanded GWAS of 286 870 European individu-
als (25) and ’birth weight’ (rg = 0.91, 95% CI: 0.65–1.17) in 143 677
European individuals (23). It is important to note that genetic
correlations referenced above are from three studies that are
not entirely independent. Sequential studies (in chronological
order, references (22,23,25)) used a core set of samples obtained
by the Early Growth Genetics Consortium (EGG), which were
expanded upon with new releases of the UK Biobank.

A positive correlation was also observed with ’offspring
birth weight’ (i.e. the maternal genetic effect on offspring
BW), as measured in 216 611 mothers (25) (rg = 0.76, 95% CI:
0.49–1.03). Of the genetic correlations with other phenotypes,
six additional anthropometric traits exhibited strong positive
genetic correlations, including offspring birth weight (maternal
genetic effect on offspring BW after adjusting for the correlated
offspring’s genotype) (rg = 0.92, 95% CI: 0.66–1.19), own birth
weight (individuals own genetic effect on their own BW after
adjusting for the correlated maternal genotype) (rg = 0.69, 95%
CI: 0.45–0.93), child birth length (rg = 0.57, 95% CI: 0.30–0.83),
extreme height (rg = 0.38, 95% CI: 0.19–0.57), height (rg = 0.35,
95% CI: 0.19–0.51) and hip circumference (rg = 0.32, 95% CI:
0.17–0.47).

Glycemic traits were all negatively associated with BW,
whereas cognitive characteristics, measured by intelligence,
correlated positively (rg = 0.20, 95% CI: 0.02–0.37). Genetic
correlations of BW in twins with autoimmune disorders,
psychiatric disorders, reproductive traits and smoking behavior
yielded mixed results.

The SNP heritability (h2) was calculated using LD Score
regression. The h2 was estimated to be 0.0407 for BW in twins.
For BW in singletons, the heritability estimates from three
studies were h2 = 0.1139, h2 = 0.0985 and h2 = 0.1016 for ‘child
birth weight’ (22), ‘own birth weight’ (25) and ‘birth weight’ (23),
respectively. The heritability estimate of UK Biobank birth weight
was h2 = 0.1006.

PolyGenic Score prediction

The PGS, based on summary statistics from GWA analyses of
BW in UK Biobank, robustly predicted BW in NTR twins and

singletons. The PGS including the fraction of SNPs with a P-
value selection threshold of 0.01 was the best predictor for BW
in twins (β = 68.19, P = 2.10 × 10−51, PGS R2 = 0.02) and singletons
(β = 108.18, P = 6.94 × 10−57, PGS R2 = 0.03), as shown in Table 1.

As shown in Figure 4A, a comb-like distribution of raw BW
was observed in singletons, corresponding to even ∼500 g incre-
ments, reflecting assessment of BW in this group.

BW category was also evaluated as the response variable
(histograms in Figure 4B). The evaluation was done in all target
samples (twins and singletons) by including twin status and an
interaction of PGS and twin status as predictors in the model
(Table 2). As before, the PGS including the fraction of SNPs with a
P-value selection threshold of 0.01 represented the best predictor
of BW category (β = 0.18, P = 1.68 × 10−49, PGS R2 = 0.02). Together,
the results of PGS prediction analyses suggest that BW PGS con-
structed from a large representative discovery population pre-
dict BW similarly in a target population of twins and singletons.

Discussion
We performed a genome-wide meta-analysis of BW in twins and
compared the genetic architecture of BW between twins and
singletons. Our results, particularly the genetic correlation and
PGS analyses, provide compelling evidence for considerable
genetic overlap between BW in twins and singletons.

The genetic correlation between BW in twins and the
most recent reported results in singletons was very strong
(rg = 0.92, 95% CI: 0.66–1.18), indicating a large overlap in
the genetic variants influencing BW in the two groups. The
genetic associations with health-related traits, when comparing
the size and direction from our genetic correlation analyses
with the results from Horikoshi and colleagues (23), showed
remarkably similar results. This similarity suggests that
the differential pattern of fetal growth between twins and
singletons does not affect the relation between BW and later-life
disease.

We evaluated the predictive performance of PGS derived from
a GWAS on BW from a large representative population from the
UK Biobank in a large target sample of NTR twins and non-
twins. The PGS calculated from the proportion of SNPs with a P-
value selection threshold of 0.01 demonstrated robust prediction
in both singletons (P = 6.94 × 10−57) and twins (P = 2.10 × 10−51).
While the proportion of variation explained by the best predict-
ing PGS was small for twins at 2% and non-twins at 3%, despite
moderate heritability estimates, such PGS represents common
genetic architecture underlying BW in twins and singletons
even though there are clear differences in BW between the two
groups. Smaller heritability estimates were also observed for BW
in twins, potentially indicating a form of sibling competition.
That is, if one twin grows and occupies the growing space of
the co-twin, the genes that increase the BW of the larger twin
may also limit the growth of the co-twin. Consistent with our
results, sibling competition would result in a dampened effect
of the PGS and would be reflected in lower heritability estimates
in twins.

The results of the GWAMA did not yield SNPs significantly
associated with BW in twins. Two lead SNPs, rs10800682 and
rs3845913, had association signals of P < 5 × 10−7. rs10800682
was not near (>2 Mb away) and was independent (r2 < 0.05) of all
genome-wide significant loci found by Horikoshi and colleagues
(23), making it a potential candidate for future twin studies.
rs3845913 is an intronic variant of ADCY5, which, along with
CCNL1, were two of the first genes robustly associated with fetal
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Figure 3. Genetic relationships between BW in twins and 57 other phenotypes. SNP-based genetic correlations (rg) between BW in twins and a range of other traits

and diseases using LD Score regression. The bars represent 95% confidence intervals. The genetic correlation estimates are color coded according to their respective

category. HbA1C = hemoglobinA1C, HOMA-IR = homeostatic model assessment of insulin resistance, HOMA-B = homeostatic model assessment of beta cell function,

PGC=Psychiatric Genetics Consortium, BMI = body mass index. PubMed reference numbers (PMID) for each trait are listed in Supplementary Table 2.

growth and BW (21). Additionally, rs3845913 is ∼31 kb down-
stream and is in LD (r2 = 0.154) with rs11719201 (an intronic vari-
ant of ADCY5), one of 60 loci previously associated with BW (23).
To pinpoint exactly how and through which gene(s) rs10800682
and rs3845913 may affect BW, additional and functional follow-
up studies are necessary. Previously associated alleles at ADCY5
were found to be BW lowering and risk increasing for type 2
diabetes, consistent with the fetal insulin hypothesis (35).

The results from this study strongly suggest that BW data
from twins and singletons may be meta-analyzed together
in GWAMA, despite the limited sample size of the discovery

GWAMA in twins (N = 42 212). Another limitation is that we
corrected for birth order, gestational age and maternal age at
birth in a majority of cohorts but could not do so for all cohorts
due to data availability. This information should ideally always
be included when BW data are collected.

Additionally, we report genome-wide estimates of shared
genetic effects based on common genetic variation (SNPs with
MAF > 0.01 per default settings in LDHub). Suppose the effects
of rare variants are not shared similarly to the effects of com-
mon variants for each phenotype comparison. In that case, the
genetic correlation estimates could be misleading. However, in
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Table 1. Results of the PGS prediction in NTR twins and singletons

Twins (N = 10 487) Singletons (N = 6892)

Prop βPGS SEPGS PPGS PGS R2 βPGS SEPGS PPGS PGS R2

0.001 18.89 4.66 5.04E-05 0.00 34.28 6.87 6.09E-07 0.00
0.003 19.94 4.57 1.26E-05 0.00 38.67 6.72 8.77E-09 0.00
0.005 54.19 4.72 1.86E-30 0.01 75.01 6.75 1.13E-28 0.02
0.01 68.19 4.52 2.10E-51 0.02 108.18 6.81 6.94E-57 0.03
0.05 60.35 4.50 5.39E-41 0.01 101.71 6.88 1.73E-49 0.03
0.1 58.48 4.50 1.26E-38 0.01 99.71 6.88 1.52E-47 0.03
0.2 57.25 4.50 4.46E-37 0.01 98.45 6.89 2.24E-46 0.03
0.3 56.83 4.50 1.43E-36 0.01 98.10 6.89 4.96E-46 0.03
0.5 56.53 4.50 3.23E-36 0.01 97.77 6.89 1.01E-45 0.03
INF 55.39 4.53 2.09E-34 0.01 90.48 6.98 1.92E-38 0.02

Note: Prop (proportion) is the P-value fraction for SNP inclusion in the polygenic score (PGS), β is the regression coefficient for each term with standard error (SE) and
P-value (P). PGS R2 is the phenotypic variance explained by the PGS.

Table 2. Results of the PGS prediction of BW category for NTR twins and singletons (N = 17 379)

Prop βPGS SEPGS PPGS βTS SETS PTS βINT SEINT PINT PGS R2

0.001 0.06 0.01 2.06E-06 –1.07 0.02 <0.001 –0.03 0.01 0.09 0.00
0.003 0.06 0.01 2.69E-07 –1.07 0.02 <0.001 –0.02 0.01 0.09 0.00
0.005 0.12 0.01 3.74E-23 –1.07 0.02 <0.001 –0.03 0.01 0.06 0.01
0.01 0.18 0.01 1.68E-49 –1.07 0.02 <0.001 –0.06 0.01 6.24E-05 0.02
0.05 0.17 0.01 1.48E-42 –1.07 0.02 <0.001 –0.06 0.01 3.23E-05 0.01
0.1 0.17 0.01 6.58E-41 –1.07 0.02 <0.001 –0.06 0.01 3.09E-05 0.01
0.2 0.17 0.01 7.29E-40 –1.07 0.02 <0.001 –0.06 0.01 2.98E-05 0.01
0.3 0.17 0.01 1.44E-39 –1.07 0.02 <0.001 –0.06 0.01 2.83E-05 0.01
0.5 0.17 0.01 2.68E-39 –1.07 0.02 <0.001 –0.06 0.01 2.83E-05 0.01
INF 0.15 0.01 3.21E-33 –1.07 0.02 <0.001 –0.05 0.01 <0.001 0.01

Note: Prop (proportion) is the P-value fraction for SNP inclusion in the polygenic score (PGS), β is the regression coefficient for each term with SE and P-value (P) for
the PGS, TS and the INT of TS and PGS. PGS R2 is the phenotypic variance explained by the PGS.

terms of their shared influences on pairs of phenotypes, there
is not a theoretical reason to expect systematic differences in
the effects of rare and common variants. Rare variants with
larger effects would not preclude carrying far more numerous
common variants with smaller effects. Thus, the genetic correla-
tions presented in this study may provide reasonable estimates
based on common genetic variation; however, to validate these
findings, rare variant studies are needed. Future studies may
also expand upon our genetic correlation estimates by utilizing
non-European populations, greater sample sizes (for discovery
and trait-specific phenotypes as they become available) and
increased density across the genome.

Concerning the results of the PGS prediction, we note that
the P-value selection threshold of the most predictive PGS is
a function of the effect size distribution, the statistical power
of the discovery GWAMA and the NTR target data, the genetic
architecture of BW, as well as the fraction of associated markers.

Follow-up research may aim to better understand BW since
it is influenced by direct fetal and indirect maternal genetic
influences through the intra-uterine environment. The amount
of variance in BW explained by the maternal genotype has been
estimated as substantially smaller than the fetal genetic contri-
bution (47). Recent work suggests that fetal size measurements
at birth are predominantly determined by the fetal genome,
whereas the gestational duration is primarily dictated by the
maternal genome (48). A better understanding of the genetic
architecture of BW, and fetal growth more generally, will aid

in the elucidation of immediate health outcomes (e.g. preterm
birth, fetal growth restriction) and reveal relationships with
later-life health outcomes (e.g. cardiovascular disease, type-2
diabetes).

To conclude, we show that based on genetic correlation and
PGS analyses, the genetic architecture of BW in twins and sin-
gletons is similar. Of course, it is known that mean differences
in BW between twins and singletons exist; however, the find-
ings of this work strongly suggest that the genetic causes of
variation are the same. Bearing this in mind, the results of
this work indicate that it is appropriate to meta-analyze twins
and singletons for genetic studies of BW. However, careful con-
sideration of analytical strategies will be needed since details
specific to twins may not apply to full-term singletons. Small
groups of twins might still need to be excluded; for example,
the highly discordant BW pairs due to the possibility for twin-
to-twin transfusion syndrome (TTTS). Also, in full-term single-
tons, a typical gestational age cut-off for exclusion (e.g. born
before 37 weeks) is often applied, which will not be applicable
with the inclusion of twins due to shorter gestational dura-
tion (16) and delayed fetal growth after 32 weeks (38–41). One
approach to address these issues would be to perform sepa-
rate GWAS on standardized BW in each group with appropriate
exclusion criteria and covariates specific to twins and non-
twins with subsequent meta-analysis of P-values since beta
estimates and intercepts will be affected by raw differences
in BW.
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Figure 4. Histograms of raw and categorical BW for NTR twins and singletons. Panel A shows histograms for raw BW in grams. Panel B portrays the distributions for

BW categories 1–6 as described in the text. N = 10 487 twins; 6892 singletons. It is of note to point out the peaks corresponding to ∼500 g increments in the singletons

in panel A, which simply may reflect assessment of BW measures in this group.

Materials and Methods
Samples

Eight population-based twin registers supplied data: the Nether-
lands Twin Register (NTR) (49,50), Queensland Institute of Med-
ical Research (QIMR—comprised of the Queensland Twin Reg-
istry (51) and the Australian Twin Registry (52,53)), Danish Twin
Registry (DTR) (54), Finnish Twin Cohort Study (FinnTwin) (55,56),
Twins Early Development Study (TEDS) (57), Child and Adoles-
cent Twin Study in Sweden (CATSS) (58–60), Avera Twin Register
(ATR) (61,62) and the UK Biobank (UKB) (63). In UKB, twins were
identified as previously described (64). A detailed description

of cohort sample characteristics can be found in Table 3. Infor-
mation on genotyping and quality control procedures for each
cohort can be found in Supplementary Material, Table S3.

Study-level analyses

Birth weight (BW) measures were z-score transformed
([BWvalue−BWmean]/BWstandard deviation) before analysis. Each par-
ticipating study group performed the association analyses
between each SNP genotype and BW z-scores with the following
covariates where available: sex, gestational age, year of birth,
maternal age at birth, birth order and relevant study-specific
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Table 3. Number of individuals, birth weight and associated measures per cohort

Cohort Country Sample size
(M/F)

Mean (SD) BW
(grams)

Birth year
range

Mean (SD)
maternal age
(years)

Mean (SD)
gestational age
(weeks)

Data collection

AVERA USA 279
(88/191)

2431.97
(547.42)

1939–2018 29.09
(4.92)

36.75
(2.92)

Self-report,
parent-report

CATSS Sweden 13 595
(6706/6889)

2651.83
(564.34)

1985–2005 30.72
(4.62)

36.54
(2.64)

Medical birth
registry

DTR Denmark 1432
(687/745)

2688.80
(534.10)

1903–1952 NA NA Mid-Wife records
and self-report

FinnTwin Finland 1778
(812/966)

2749
(448.73)

1974–1987 29.21
(4.63)

37.36
(1.81)

Parent-report

NTR The
Netherlands

6951
(2942/4009)

2586.16
(467.62)

1922–2012 30.00
(4.33)

37.14
(2.04)

National youth
health services,
self-report and
parent-report

QIMR Australia 5435
(2263/3172)

2626.53
(510.54)

1922–1999 29.34
(5.04)

37.90
(2.14)

For birthweight and
gestational age:
Self-report or
parental report
depending on study
(for adults);
maternal report (for
adolescents). For
gestational age:
assumed 37 weeks if
not available. For
birth year and
maternal age:
derived from dates
of birth.

TEDS UK 6527
(3109/3418)

2522.25
(530.86)

1994–1996 31.01
(4.79)

36.47
(2.41)

Parent-report

UKB UK 6215
(2300/3915)

2431.64
(737.42)

1937–1970 NA NA Self-report (UKB ID
20022)

CATSS= Child and Adolescent Twin Study in Sweden, DTR = Danish Twin Registry, NTR = Netherlands Twin Register, QIMR = Queensland Institute of Medical Research,
TEDS = Twins Early Development Study, and UKB = UK Biobank. M/F are counts of male and female individuals, respectively. SD is standard deviation. NA represents
unavailable information.

metrics (e.g. principal components (PCs) correcting for genomic
ancestry). For all cohorts, except ATR, birth order was available.
The analysis was performed without adjustment for maternal
age at birth and gestational age in the DTR. Association analyses
were performed in PLINK v1.07 (65) with the Generalized
Estimation Equation (GEE) package using the R-package plugin
to correct for family relatedness or according to local best
practices (details provided in Supplementary Material, Table S3).
Sample exclusion criteria were phenotypic outliers (BW z-score
greater than or less than five standard deviations from the
mean), premature births (gestational age less than 33 weeks),
monozygotic (MZ) twins with TTTS including twin pairs with
BW more than 35% discordant (a group likely including TTTS
twins), triplets and higher-order multiple births and participants
with non-European ancestry.

Meta-analysis

Summary statistics from each cohort GWA analysis underwent
another round of standard quality control before meta-analysis.
The R-package EasyQC (66) was used to perform quality control
analyses. Insertions and deletions, SNPs with missing or invalid
values, markers with Minor Allele Frequency (MAF) < 0.01, and
those with poor imputation quality (<0.30) were excluded.

Resulting quality controlled summary statistics from each
cohort were meta-analyzed using the inverse variance-based
approach in METAL (67). Genomic control was applied to adjust
the statistics generated by each cohort (68). In the meta-analysis,
SNPs present in greater than 70% of all participants were
retained.

Association tests

FUMA (FUnctional Annotation and Mapping v1.3.6) (69) was used
to annotate GWAMA results and identify genomic risk loci. These
loci were defined as independent lead SNPs exhibiting maxi-
mum distance between their linkage-disequilibrium (LD) block.
For genome-wide significance in the meta-analysis, a P-value
threshold of 5 × 10−8 was adopted. The minimum threshold for
defining independent significant SNPs was r2 ≥ 0.6, which was
used to determine the borders of the genomic risk loci. The
minimum threshold for defining lead SNPs, used for clumping
of the independent significant SNPs, was r2 ≥ 0.1. Independent
significant SNPs closer than 250 kb were merged into one
genomic risk locus. SNPs in LD with the independent significant
SNPs were considered candidate SNPs and defined the borders
of the genomic risk loci. We tested whether the signals from our
analyses overlap with previously identified loci for BW in
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singletons. In agreement with Horikoshi et al. (23), if a lead SNP
mapped >2 Mb away from, and was statistically independent
(LD r2 < 0.05 based on European population reference set) of
any of the 60 previously identified loci, it was considered novel.
We calculated the r2 between the signals with the web-based
application LDmatrix within the LDlink (v3.8) (70) suite of tools.

Genetic correlations

To quantify the degree of shared genetic contribution between
BW in twins and BW in singletons and to correlate BW in twins
to other individual-level health-related traits and diseases, we
employed LD Hub (v1.9.3) (http://ldsc.broadinstitute.org/ldhub/)
(71). LD Hub is a centralized database of summary-level GWA
study results facilitating the calculation of genetic correlations
(72) between user-supplied summary statistics and a variety
of user-selected traits using LD score regression (73). HapMap3
SNPs from summary statistics of the GWAS for each trait and
pre-computed LD scores were used in the analyses (available
on: https://github.com/bulik/ldsc). LD score regression requires
large sample sizes and utilizes LD information from an ancestry-
matched reference panel; therefore, genetic correlation analyses
were constrained to European GWA study samples. SNPs with a
MAF ≤ 0.01 were excluded.

For the comparisons with previous genome-wide genetic
correlation analyses in singletons (7), we selected the following
categories of traits: anthropometric traits, reproductive traits,
glycemic traits, autoimmune disorders, cognitive abilities, psy-
chiatric diseases and smoking behavior. In total, we tested for
association with 57 traits.

SNP heritability (h2) was calculated in LD Hub with LD score
regression to evaluate how much of the variation in BW could be
ascribed to common additive genetic variation.

PolyGenic Score prediction

GWAS results on BW from the UK Biobank (data field 20022)
(http://www.nealelab.is/uk-biobank/) served as the discovery set
for calculating polygenic scores (PGS) in the NTR target dataset.
For the PGS prediction of BW in the NTR, participants with
complete BW data and maximum information on covariates
(genomic PCs, sex, year of birth, gestational age, twin status
and genotyping platform) were included. When not available,
gestational age was imputed with the mean gestational age
separately for twins (mean = 37.38 weeks) and singletons
(mean = 39.89 weeks). Genotyping platform and ten genomic
PCs were included in the model to account for batch effects
(i.e. non-random selection of samples genotyped on specific
arrays) and residual population stratification. The target sample
consisted of 17 379 individuals, comprising 10 487 twins and
6892 singletons. Summary statistics from the UK Biobank GWAS
on BW were adjusted for the effects of LD with LDpred (74)
using the LD structure of European populations in the 1000
Genomes references set (75). Recalculated effect size estimates
representing ten fractions of P-value significance (0.001, 0.003,
0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, INF (infinitesimal)) were used
for allelic scoring in PLINK (65).

We used the PGS to predict BW in NTR twins and single-
tons using GEE methods in R (76), taking into account familial
relationships. We also evaluated the predictive performance of
the PGS on categorical BW in the entire target sample of twins
and singletons by including twin status and an interaction term
of PGS and twin status in the regression model. Six categories
were constructed, representing the following BW ranges: <2000,

2000–2500, 2501–3000, 3001–3500, 3501–4000, >4000 g. Complete
regression equations can be found in the Supplementary Meth-
ods. The phenotypic variance explained, captured by R2, was
used to evaluate the predictive performance of each PGS. Our
main interest was to determine how well PGS derived from a
large discovery population, reflecting general population num-
bers of twins, could predict BW in a separate target population
of twins and singletons.

Supplementary Material
Supplementary Material is available at HMG online.

Data Access
Summary statistics for the GWAMA of BW in twins can be
downloaded from the GWAS catalog website: https://www.ebi.a
c.uk/gwas/ .
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